
GREEN TEA PROGRAMMING
LANGUAGE MANUAL
https://gtlang.com

Contents
Introduction...3
Prerequisites..3
Before reading:..3
Installation...4

Windows...4
Linux...4

Debian...4
Centos...4

MacOS..4
Usage... 4

Interprept...4
Compile:...4
Language file..4

Syntax..5
Comments..5
Keywords..6
Commands..6
Blocks... 6
Inclusion...7

Variables..7
Assignment:..8
Get value:...8
Scope.. 8

Function... 8
Declare...9
Regex-name function..9

Expressions..10
Operators...11

1

https://gtlang.com/

Arithmetic operators...11
 Assignment operators..11
Comparison operators..12
 Increment/Decrement operators...12
 Logical operators...12
 String operators...13
 Array operators..13
 Conditional assignment operators...13
Precedence and brackets...13

Data types...14
 Strings...15
Number...15
Booleans...15
 Arrays..16

Declare:...16
Get/assign value for element:..16

Objects...16
Initialize...16
Access object peroperties or method:...16

 NULL..17
Functions..17

Conditional structure...17
If else structures...17
?? expression..18

Loop structures..19
For structures...19

Simple for structures:..19
Full for structures:...20
For-in with arrays...20
Foreach..21

While loop structures..21
Loop controllers..21

Break...22
Continue...22

Error handlers..23

2

error_handler_function..23
try…catch...finally structures..24
defcat...deffin structures..25

Multi-threading..25
File based multi threading..25
Function based multi-threading..26

Class..26
Constructors...27
Access modifiers...27
Inherit...28
Static..28
Convert from array to object:...29
Generate class from no class object...29

Introduction
Green Tea is aimed for people who are new to programming, just like Sketch. It
is a simple language that purpose is removing all the things you should
remember and let you deploy your idea in Zen mode. "Your ideas matter, not the
syntax".

+ Simple and easy to learn, even for people haven’t know anything about
programming

+ Easy to switch from other languages

+ Could be used to syntactically convert a source code of a language to another.

+ Use your native language to code. Why do you have to learn English fore
code?

Green Tea is inspired by PHP, and is a script/compiled language,
functional/object-oriented language

Parts of this document is copied from the PHP manual.

Prerequisites
Green Tea is made for newcomers. No prerequisites here.

Before reading
In this document, example code are blue and on-screen in/output are orange.

Code:

3

Hello World
Input:

< John
Output:

> 10

Installation

Windows
Not suported

Linux
Generally, you just need to download the binary, put it somewhere, chmox +x it,
then add it parent folder to PATH environment variable.

Debian

Centos
Not suported

MacOS
Not suported

Usage

Interprept
gtlang <sourcefile>
Ex:

gtlang hello_world.gtc

Compile:
gtcompiler <sourcefile> <output file>
Ex:

gtcompiler hello_world.gtc hello_world

Language file
Green Tea is the multi-language programming language

To use another language, use use_language_file keyword

The variables’ name, functions’ name, classes’ name, keywords could be
translated, but hard-codded strings could not.

4

Ex:

In ru.gtlang, we could define:

if : если
for : для
echo : эхо
number : номер

// (could add more here)
in the source file, use

use_language_file ru.gtlang
now you could code:

если $номер=0
 @эхо “\$номер ноль”

Syntax
Let start with a Hello world program:

Green Tea syntax is inspired by PHP, Shell Script, Javascript, Python, C++, Java,
in decreasing order.

Hello World
> Hello World
Congratulation. You are now a certificated Green Tea developer, with a lot of
years of experiences .

Comments
Comments in code will not be executed

Start with // to the end of line, or between /* and */

$a : 3 // create var a and assign 3
or

/* this is a comment
 create var a and assign 3
end of comment */
$a := 3
You can use html tags in comments.

/* <html>this is a comment

 create var a and assign 3

end of comment </html>*/
$a := 3

5

Keywords
Here is the lists of keywords in Green Tea. You will know them later.

abstract, and, as, break, callable, case, catch, class, clone, const, continue,
declare, default, die(), do, echo, else, elseif, empty(), endswitch, endwhile, eval(),
exit, extends, final, finally, fn, for, foreach, function, global, goto, if, implements,
include, include_once, instanceof, insteadof, interface, isset(), match ,
namespace, new, or, print, private, protected, public, require, require_once,
return, static, switch, thread_return, throw, $time, times, trait, try, unset(), use,
var, while, xor,

If you need any keyword as a string, please quote it.

@echo abtract
> Syntax error
@echo "abtract"
> abtract

Commands
A command is an instruction to do something. Usually a command is in a line

@echo hello
If you need multiple commands in one lines, separate them by semicolons (;)

@echo hello; @echo " "; @echo world
If you need a command use multiple lines, use ... at the end of not-last lines

@echo 1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1 ...
 1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1...
 1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1...
 1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1...
 1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1
> 0

Blocks
Commands of a block will have same indentation level, you could have multiple
block levels in a source file. Just like python.

To understand better about block, please read bellow sections about if structures
and loop structures and functions.

Indentation level depends on number of spaces and tabs at the beginning of the
line contain the command

Indentation level = round(number of spaces/4) + number of tabs

Blocks of commands are multiple commands that is expected to be executed
together, executed in order top to bottom, left to right.

6

Inclusion
You could use include keyword to add another file to current execution when
program run.

Ex:

File a.gtc

@sum $a, $b
return $a + $b

@echo "this is file a\n"
File b.gtc

@echo "begin file b\n"
include "a.gtc"
@echo "this is file b\n"
@echo @sum 3, 4
This is equivalent to:

@echo "begin file b\n"
@sum $a, $b

return $a + $b
@echo "this is file a\n"
@echo "this is file b\n"
@echo @sum 3, 4
> begin file b
> this is file a
> this is file b
> 7
About the function

@sum $a, $b
 return $a + $b
please see function section

Variables
Variables (vars) are places in memory when we store a values

Variables in Green Tea are represented by a dollar sign followed by the name of
the variable. The variable name is case-sensitive.

Variable names follow the same rules as other labels in GreenTea. A valid
variable name starts with a letter or underscore, followed by any number of
letters, numbers, or underscores. As a regular expression, it would be expressed
thus: ^[a-zA-Z_\x80-\xff][a-zA-Z0-9_\x80-\xff]*$

Ex: $var_name

7

Assignment
Put a value into a var

$var:<value>
Ex:

$name:John
$age:24
Or assigning multiple vars at ocne:

$name,$age: John, 24

Get value
To get a variable’s value, use it’s name:

$name:John
$name
> John

Scope
A variable defined in a function only usable in that function.

If you want to access global variables inside function, use $$ instead of $

$a=0
@function
 $b: 1
 $$c: 2
 @echo $a // error
 @echo $$a // output: 0
@echo $b // error
@echo $c // output: 2

Function
Functions are tasks, type it names, provide parameters and it’ll do it task.

Functions in Green Tea are represented by a at sign followed by the name of the
function. The function name is case-sensitive.

Function names follow the same rules as other labels in GreenTea. A valid
function name starts with a letter or underscore, followed by any number of
letters, numbers, or underscores. As a regular expression, it would be expressed
thus: ^[a-zA-Z_\x80-\xff][a-zA-Z0-9_\x80-\xff]*$

The very first function you should know is @echo. It print var’s value to screen.

@echo "Hello world!!!"
> Hello world!!!

8

Declare
@function_name

<block>// the things this function do
Ex:

@my_function
@echo 123
@echo 456

Then you call it

@my_function
> 123456
Adding some parameters, separated by commas:

@say_hi_to $param_1, $param_2
@echo Hello $param_1 I am $param_2

@say_hi_to Annie John
Or:

Annie @say_hi_to Join
> Hello Annie I am John
Functions could return value, when they do, outer code could get the return
value

@sum $a, $b
return $a + $b

$sum_total : (@sum 1, 2) + (@sum 3, 4)
> 10
Functions could return multiple values, like Python

@sum $a, $b
return $a + $b, $a - $b

$sum, $sub : (@sum 4, 3)
@echo "$sum and $sub"
> 7 and 1
Note: when using more than 1 function on a line (function and operator, 2
functions,…), you must wrap function call with ()

When you do not have return in your function or have only return with no
parameter, function return false.

Regex-name function
Let write a function that add 1 to a number, then write it out.

@add1 $number
@echo ($number + 1)

9

Now, we need function that add 2 to a number, we will need to write new
function which nearly exact content, which is boring. We provide Regular
expression function to solve this.

@<function name’s static part>{< function name’s regular expression part>}
<parameters>

<actions>

You could use $_func_name to access the value at the regular expression on
function name.

Ex:

Let’s rewrite the @addX function.

@add{[0-9]*} $num
@echo($_func_name + $num)

@add1 2
> 3
@add3 4
> 7
In case that a function call match multi Regex-name functions, only the firstly
declared Regex-name function matched will run.

Expressions
Expressions includes vars and anything else with value

Ex:

 1 + 2
 "hello"
@sqr 2
To get the result value from expression, you could use assignment:

$value: 1+2+3/3
@echo "value:" $value
> value: 4
You could also get the value of expression in previous command using $?

1+2+3/3
@echo "value:" $?
> value: 4

Operators
Operators are operations on value(s), including:

 Arithmetic operators

10

 Assignment operators
 Comparison operators
 Increment/Decrement operators
 Logical operators
 String operators
 Array operators
 Conditional assignment operators

Arithmetic operators
Operat
or

Name Examp
le

Result

+ Addition $x+$y Sum of $x and $y
- Subtraction $x - $y Difference of $x and $y
* Multiplication $x * $y Product of $x and $y
/ Division $x / $y Quotient of $x and $y
% Modulus $x %

$y
Remainder of $x divided by $y

** Exponentiati
on

$x **
$y

Result of raising $x to the $y'th
power

 Assignment operators
The basic assignment operator in GreenTea is ":". It means that the left operand
gets set to the value of the assignment expression on the right.

Assignmen
t

Same
as...

Description Example

$x: y The left operand gets set to
the value of the expression on
the right

$age: 1

$x +: y x : x +
y

Addition $year +: 2

$x -: y x : x - y Subtraction $year -: 2
$x *: y x : x *

y
Multiplication $money *: 2

$x /: y x : x / y Division $number /: 3
x %: y x : x %

y
Modulus $count %: 5

Assignments operator return assigned value

$a : 4
$?
> 4

Comparison operators
Operat
or

Name Exampl
e

Result

= Equal $x = $y Returns true if $x is equal to $y
== Identic

al
$x
==$y

Returns true if $x is equal to $y, and they are of the same
type

!= Not
equal

$x !=
$y

Returns true if $x is not equal to $y

!== Not $x !== Returns true if $x is not equal to $y, or they are not of the

11

identic
al

$y same type

> Greater
than

$x > $y Returns true if $x is greater than $y

< Less
than

$x < $y Returns true if $x is less than $y

>= Greater
than or
equal
to

$x >=
$y

Returns true if $x is greater than or equal to $y

<= Less
than or
equal
to

$x <=
$y

Returns true if $x is less than or equal to $y

 Increment/Decrement operators
Operator Name Descriptiont
++$x Pre-increment Increments $x by one, then returns

$x
$x++ Post-increment Returns $x, then increments $x by

one
--$x Pre-decrement Decrements $x by one, then returns

$x
$x-- Post-decrement Returns $x, then decrements $x by

one

 Logical operators
Operat

or
Name Example Result

and And $x and $y True if both $x and $y are true
or Or $x or $y True if either $x or $y is true
xor Xor $x xor $y True if either $x or $y is true, but not

both
&& And $x && $y True if both $x and $y are true
|| Or $x || $y True if either $x or $y is true
! Not !$x True if $x is not true

 String operators
Operato
r

Name Example Result

+ Concatenation $txt1 + $txt2 Concatenation of $txt1 and
$txt2

+: Concatenation
assignment

$txt1 +:
$txt2

Appends $txt2 to $txt1

/ split $string /
$delimeter

Return an array, which is
result of splitting $string with
$delimeter

You could concatenate 2 string by putting them near by:

 ab == $a+$b

12

 Array operators
Operat

or
Name Examp

le
Result

+ Union $x +
$y

Union of $x and $y

= Equality $x ==
$y

Returns true if $x and $y have the same key/value pairs

== Identity $x
===
$y

Returns true if $x and $y have the same key/value pairs in
the same order and of the same types

!= Inequalit
y

$x !=
$y

Returns true if $x is not equal to $y

!== Non-
identity

$x !==
$y

Returns true if $x is not identical to $y

 Conditional assignment operators
?? Ternar

y
$x : expr1 ? expr2 ?
expr3

Returns the value of $x.
The value of $x is expr2 if expr1 =
TRUE.
The value of $x is expr3 if expr1 =
FALSE

Precedence and brackets
Expression are calculated by Precedence order. Which operator have higher
precedence will be calculated earlier. For example:

 1 + 2 * 5 = 1 + 10 = 11

In order to let the lower precedence to be calculated first, we could put the
lower-rank operators and its objects round brackets

(1 +2) * 5 = 3 * 5 = 15

The following table lists the operators in order of precedence, with the highest-
precedence ones at the top. Operators on the same line have equal precedence,
in which case associativity decides grouping.

Associativity Operators Additional Information
(n/a) clone new clone and new
right ** arithmetic
(n/a) + - ++ -- ~ (int) (float)

(string) (array) (object)
(bool) @

arithmetic (unary + and -),
increment/decrement, bitwise, type
casting and error control

left instanceof type
(n/a) ! logical
left * / % arithmetic

13

left + - . arithmetic (binary + and -), array and
string (. prior to PHP 8.0.0)

left << >> bitwise
left + string
non-associative < <= > >= comparison
non-associative = != == !== <> comparison
left & bitwise and references
left ^ bitwise
left | bitwise
left && logical
left || logical

non-associative ? : left-associative
right : +: -: *: /” %: &: |: assignment

(n/a) yield from yield from
(n/a) yield yield
(n/a) print print
left and logical
left xor logical
left or logical

Data types
Green Tea support following data types:

 String
 Number
 Boolean
 Array
 Object
 NULL
 Function

 String
A string is a sequence of characters

Hello world
"Hello world"
‘Hello world’
There are some standard escaped characters included in Green Tea’s string:

Sequenc
e

Meaning

\n linefeed (LF or 0x0A (10) in ASCII)
\r carriage return (CR or 0x0D (13) in ASCII)
\t horizontal tab (HT or 0x09 (9) in ASCII)
\v vertical tab (VT or 0x0B (11) in ASCII)

14

\e escape (ESC or 0x1B (27) in ASCII)
\f form feed (FF or 0x0C (12) in ASCII)
\\ backslash
\$ dollar sign
\" double-quote
\[0-7]
{1,3}

the sequence of characters matching the regular expression is a
character in octal notation, which silently overflows to fit in a byte (e.g. "\
400" == "\000")

\x[0-9A-
Fa-f]
{1,2}

the sequence of characters matching the regular expression is a
character in hexadecimal notation

\u{[0-9A-
Fa-f]+}

the sequence of characters matching the regular expression is a Unicode
codepoint, which will be output to the string as that codepoint's UTF-8
representation

We recommend you use quotation marks for string until you remember the word
that shouldn’t be used unquoted.

Number
Numbers include integers and doubles:

-17

3.14

0

0.1

infinite

Boolean
Booleans are either true or false

 Array
An array is a sequence of elements. Elements could be in different types,
elements also could be array. An array is a set of key-value pair, contains all
unique keys. Keys could be number, string

Types of element’s value could be mixed

Declare:
Use [] operator to declare value for arrays.

$array : [0=>a,1=>b, 2=>c] // with keys
$array_mixed_type : [1, hello, true, [4.6, false]] // auto
key, auto-increase from 0, 1, …

Get/assign value for element:
Use $array_var_name[key]

(Using above array declarations)

15

$array[1]
> b
$array[0] : test
$array[0]
> test
$array_mixed_type [3][2]
> false
Or

$array_mixed_type [3,2]
> false
$array_mixed_type [3,2] : true
$array_mixed_type [3][2]
> true
Add new element to array:
$array[]: d

You could iterate through array, see section about looping for detailed.

Object
Objects are sets of properties and methods that use the common templates
called classes. They will be describe more in object oriented section

Objects are represent of object oriented programming.

Initialize
$object : (@new $Class_name)

Access object peroperties or method:
use operator . (single dot)

$object . (@changeName John)
$object . $name
> John

 NULL
NULL is the type that hold no value

Function
You could assign a function for a var

@function_add $a, $b
return $a + $b

$var_add : @function_add

16

Conditional structure

Conditional structures are where program choose which part of program to be run by using
condition. Includes:

 if else structures
 ? : operators.

If else structures
When you want to split the flow of code into multiple cases base on some
conditions. You could use if clause:

if <condition>
<action if condition is satisfied>

else
<action if condition is not satisfied>

Both actions could be single command or block

For example, you write a simple program that test if user input even number:

@echo ‘Please enter a even integer:’
@read $number_input // read user input into $number_input
if $number_input%2 =0

@echo This is an even number
@echo Congratulation

else
@echo This is not an even number

When user run the program and enter 1

> Please enter a even integer:
< 1
> This is not an even number
When user run the program and enter 2

> Please enter a even integer:
< 2
> This is an even number
> Congratulation
Multiple if else:

Used when there are multiple cases.

Ex: there are 3 students in class with corresponding student code. Write a
program let user input a number, then output their name: 1 (John), 2 (Annie), 3
(Sabrina).

@echo "Enter student code 1, 2 or 3"
@read $entered_student_code
if $entered_student_code = 1

17

@echo John
elif $entered_student_code = 2

echo Annie
elif $entered_student_code = 3

echo Sabrina
else

echo Wrong number.

?? expression
You can write a short expression that get value based on condition.

<condition>?<value if condition is satisfied>:< value if condition is not
satisfied>

Ex: A simple guest game

$thinking_number:(@random_int 1, 2) // $a get value 1 or 2
randomly
@echo "I am thinking about a number: 1 or 2. Can you guest
which I am thinking?"
@read $user_input
$thinking_number : $user_input ? "Congratulation, you win" ?
"Better luck next time"
$?
In case user guest correctly

> I am thinking about a number: 1 or 2. Can you guest which I
am thinking?
< 1
> Congratulation, you win
Otherwise

> I am thinking about a number: 1 or 2. Can you guest which I
am thinking?
<2
> Better luck next time

Loop structure
Loop structures are used when you want program run a part of it repeatedly,
when you don’t want to write repeated code or when you don’t know exactly the
times it loop. Including:

 for structure
 while structure

For structure
For structure usually use when you know how many times you will loop

18

Simple for structures:
for <time counts> times

<tasks to do repeatedly>

<tasks to do repeatedly> could be single command or block

$_time is a var that hold the loop time, starting with 1.

Ex: Write 3 time "I’ll never play games in classes.", with number:

for 3 times
@echo $_time + ". I’ll never play games in classes."

> 1. I’ll never play games in classes.
> 2. I’ll never play games in classes.
> 3. I’ll never play games in classes.
You could also use at keyword here

Ex: Write 4 time "I’ll never play games in classes.", at time 3, write "This is time
3" :

for 3 times
@echo $_time+". I’ll never play games in classes."
at $_time = 3

" This is time 3"

> 1. I’ll never play games in classes.
> 2. I’ll never play games in classes.
> 3. I’ll never play games in classes. This is time 3
You could replace times with any variable:

for 3 $i:
for 3 $j:

if $j = $i:
@echo ‘ * ’

else:
@echo ‘ ’

@echo "\n" //new line
> *
> *
> *

Full for structures:
for <initation>,<break_condition>,<increasement>

<tasks to do repeatedly>

Ex: Write 3 time "I’ll never play games in classes, with number":

19

for $i:1,$i<3,$i++
@echo ($i+1)". I’ll never play games in classes."

> 1. I’ll never play games in classes.
> 2. I’ll never play games in classes.
> 3. I’ll never play games in classes.

For-in with arrays
You could iterate through elements in array and do actions for each of those
element musing for and in.

for <element’s value holding var> in <array>

<action for each element>

In case you need both the key and the value of each element:

for < element’s key holding var> => <element’s value holding var> in <array>

<action for each element>

Ex: write out all name in an array which is a list of names.

$list:["Annie","Bob", "John", "Sabrina"]
for $name in $list

@echo $name + "\n" // \n is the end of output line.
> Annie
> Bob
> John
> Sabrina
>
Now, write out all name in an array which is a list of names with it’s index.

$list : ["Annie","Bob", "John", "Sabrina"]
for $index => $name in $list

@echo $index + ". " + $name + "\n
> 1. Annie
> 2. Bob
> 3. John
> 4. Sabrina
>

Foreach
foreach $list, $k, $v:

foreach $list, $v:

foreach $list:

 $_k, $_v

20

while structure
Use while loop when you couldn’t know how many time it loops

while <loop condition>

<actions to be executed with each loop>

When the loop condition’s value is true, actions to be executed with each loop
will be executed again and again. If the loop condition’s value is false, the loop
stop, and program continue pass this structure.

 Ex: Find all Bob in an array, which is a names list.

$list : ["Annie","Bob", "Bob", "Sabrina"]
$i : 1
@echo "Positions of Bob in list:\n"
while $i <= 4

if $list[$i] = Bob:
@echo $i + "\n"

$i++
> Positions of Bob in list:
> 2
> 3
Note: You should double check the loop condition to avoid a indefinite loop.

Loop controllers

Loop controller are used to control the execution inside a loop. Includes:

 Break
 Continue

You can use loop controllers to control the loop flexibly.

Break
Break command will break current loop

Ex: : Find first Bob in an array, which is a names list. Since we don’t need find
continue after 1st Bob, we could use break after we found one.

$list : ["Annie","Bob", "Bob", "Sabrina"]
$i : 1
@echo "Positions of Bob in list:\n"
while $i <= 4

if $list[$i] = Bob:
@echo $i + "\n"
break

$i++

21

> Positions of Bob in list:
> 2
Bob at position 3 is ignored

You could break outer loop using break <number>. With number is the outer-
level number of the loop to be break. If you want to break parent loop, use
break 2; if you want to break grand parent loop, use break 3; ...

Ex: Find 1st Bob in an array, which is a names table.

$table :[
["Jack", "Daniel", "Bill", "Sabrina"],
["Annie", "Bob", "John", "William"],
["Mike", "Muriel", "Bob", "Brittney"]

]
for $i => $row in $table

for $j => $name in $row
if $name = "Bob"

@echo "Found Bob at row "...
+($i+1)+...
", column "+($j+1)

break 2
> Found first Bob at row 2, column 2

Continue
To skip the current loop and continue next loop

Ex: Find all Bob in an array, which is a names list.

$list : ["Annie","Bob", "Bob", "Sabrina"]
$i : 1
@echo "Positions of Bob in list:\n"
while $i <= 4

if $list[$i] != Bob
$i++
continue

@echo $i + "\n"
$i++

> Positions of Bob in list:
> 2
> 3
When $list[$i] is not Bob, @echo $i + "\n" won’t be executed.

You could also use continue <number> to skip the containing outer loops, like
with break.

Ex: There is an array, each line has only 1 Bob. Find Bob of each line, which is a
names table.

22

$table :[
["Jack", "Daniel", "Bill", "Sabrina"],
["Annie", "Bob", "John", "William"],
["Mike", "Muriel", "Bob", "Brittney"]

]
for $i => $row in $table

for $j => $name in $row:
if $name != "Bob"

@echo "Found Bob at row "+($i+1)+...
", column "+($j+1)

continue 2
> Found Bob at row 2, column 2
> Found Bob at row 3, column 3

Error handlers
Green Tea provide 2 ways to handle error:

error_handler_function

try…catch...finally structures

defcat...deffin (default catch)

error_handler_function
You could declare this function to handle how to show when unhamdled error
happened

@error_handler_function($errno, $errstr, $errfile, $errline)
 //do somethings

errno

The first parameter, errno, will be passed the level of the error raised, as
an integer.

errstr

The second parameter, errstr, will be passed the error message, as a
string.

errfile

If the callback accepts a third parameter, errfile, it will be passed the
filename that the error was raised in, as a string.

errline

If the callback accepts a fourth parameter, errline, it will be passed the
line number where the error was raised, as an integer.

23

errcontext

If the callback accepts a fifth parameter, errcontext, it will be passed an
array that points to the active symbol table at the point the error occurred.
In other words, errcontext will contain an array of every variable that
existed in the scope the error was triggered in. User error handlers must not
modify the error context.

try…catch...finally structures
Used to catch possible exception in try block. If a Exception match multiple
catches, only the 1st catch block matched will run. Finally block run whenever
any Exception is catch or not.

Ex: If ^DevidedByZeroException happened ($num2=0), catch block 1 will be
triggered). If other exception happened, catch block 2 will run. Finally block run
whenever any Exception is catch or not.

@devide $num1 $num2
 try
 $result = $num1 / $num2
 catch ^DevidedByZeroException
 // catch block 1
 @echo “devided by zero”
 $result = false
 catch ^Exception
 // catch block 2
 @cho “other exception”
 $result = false
 finally
 return $result

defcat...deffin structures
You could use defcat as default catch for functions, which will catch Exceptions
when running current function

defcat and deffin should be at the end of function

@devide $num1 $num2
 $result = $num1 / $num2
 defcat
 ^DevidedByZeroException
 // catch block 1
 @echo “devided by zero”
 $result = false
 ^Exception
 // catch block 2
 @cho “other exception”

24

 $result = false
 deffin
 return $result
You could use defcat and deffin outside of functions, which will handle exception
for the whole program. They should be at the end of source files.

Multi-threading

Green Tea support multi threading processing. Includes:

 File-based multi-threading (simple)
 Function-based multi-threading,

Vars will not be shared among threads, you must use parameters and return values to
exchange data among threads.

File based multi threading
Use @create_file_thread function to create a thread that execute another file. On
thread file, you could return value to main thread using thread_return. Don’t use
exit in thread file, it will also exit main thread.

File thread1.gtc :

for 3 times
@sleep 1 // wait 1s
"Thread1 – running for "+ $_time + "s"

thread_return $_args[0] // file argument #1
File main.glc:

$thread1 : (@create_file_thread "thread1.gtc Hello")
"Start thread1"
@thread_start $thread1
@thread_wait $thread1
$result : (@thread_result $thread1)
"Thread1 result is: " + $result
Run main.glc

> Start thread1
> Thread1 – running for 1s
> Thread1 – running for 2s
> Thread1 – running for 3s
> Thread1 result is: Hello
File based multi threading should have parameters which are numbers or strings,
like "Hello" in the above example.

25

Function based multi-threading
Use @create_function_thread function to create a thread that execute a function.
On thread file, you could return value to main thread using normal return. Don’t
use exit in thread function, it will also exit main thread.

@thread1 $param
for 3 times

@sleep 1 // wait 1s
"Thread1 – running for "+ $_time + "s"

return $param // file argument #1
$thread1_function : @thread1
$thread1 :(@create_file_thread $thread1_function, "Hello")
"Start thread1"
@thread_start $thread1
@thread_wait $thread1
$result : (@thread_result $thread1)
"Thread1 result is: " + $result
> Start thread1
> Thread1 – running for 1s
> Thread1 – running for 2s
> Thread1 – running for 3s
> Thread1 result is: Hello
Function based multi threading could have any kind of parameters.

Class
Classes are "template" to create objects.

Class define methods (functions) and properties (variables) of object.

Class start with ^

To access object’s assets, use dot operator.

Ex:

^Human
$name
$email
@print_info

@echo "$name - $email \n"
Then we could create object

$people_1 :(@new ^Human)
$people_1.$name: John
$people_1.$email: "john@gmail.com"
$people_1.(@print_info)
> John - john@gmail.com

26

Constructors
Constructors usually add data to object when create a new one, you could create
several using new. If you don’t create a constructor, Green Tea will create a
default one. If you have more than 1 constructors, make sure they don’t have
the same parameters count, since Green Tea will use parameters count to detect
which constructor it used.

Ex:

^Human
$name
$email
@new $input_name, $input_email

$name, $email : $input_name, $input_email

@new $input_name
$name: $input_name

@print_info
@echo "$name - $email \n"

new ^Human, John, "john@gmail.com"
$?.(@print_info)
> John - john@gmail.com
new ^Human, John
$?.(@print_info)
> John -

Access modifiers
Green Tea support private and public (default) modifier.

Private asset could not be access outside object

Ex:

^Human
$name
private $email
@new $input_name, $input_email

$name, $email : $input_name, $input_email

@new $input_name
$name: $input_name

@print_info
@echo "$name - $email \n"

@new ^Human, John, "john@gmail.com"
$?.(@print_info)
> John - john@gmail.com
new ^Human, John, "john@gmail.com"

27

@echo $?.$name
> John
new ^Human, John, "john@gmail.com"
@echo $?.$email
(Error – permission denied)

Inherit
One class could inherit some other classes using operator << . When doing so,
child class could add assets, overload method of the parent class. But could not
remove or change type of the parent one’s assets.

With class Human above, we could have:

^Student << ^Human
$point
@print_info

@echo "$name - $email - $point \n"
$student1: (new ^Student, John, "john@gmail.com")
$student1.$point: 4
$student1.(@print_info)
> John - john@gmail.com - 8

Static
Static assets are asset of the class, user don’t need to create object to access
those static assets.

^Human
static $spicies: Homo Sapien
static @getSpicies

return $spicies
^Human.(@getSpicies)
> Homo Sapien

Convert from array to object:
An array with all keys satisfied variable’s name rules could be converted to
object with no class and all public properties.

Ex:

$obj: (@to_obj ["name"=> "John", "age"-> 24])

Generate class from no class object
An object with no class could generate a class using function @gen_class.

Ex:

^Human1 = @gen_class $obj
Now $obj belong to class ^Human1.

28

29

You are already a programmer. Give us 5 minutes, you will then know green tea
programming language.

Variables are $, functions are @.

$number : 3
@echo_hello_world
 @echo "Hello world"
(@echo_hello_world)
> Hello World
Green Tea blocks of commands are indent-based. Just like Python, but you can
mix spaces and tabs.

if $a < 0
 @echo "lesser than 0"
Assignments are : and = is comparision.

$a:3 // assignment
$a=3 // comparision
New for:

for 3 times
 @echo $_time + “ ”
 at $_time = 3
 @echo “ (end)”
> 1 2 3 (end)
You know the basic. If you have any question, find it on our full document.

30

	Introduction
	Prerequisites
	Before reading
	Installation
	Windows
	Linux
	Debian
	Centos

	MacOS

	Usage
	Interprept
	Compile:
	Language file

	Syntax
	Comments
	Keywords
	Commands
	Blocks
	Inclusion

	Variables
	Assignment
	Get value
	Scope

	Function
	Declare
	Regex-name function

	Expressions
	Operators
	Arithmetic operators
	Assignment operators
	Comparison operators
	Increment/Decrement operators
	Logical operators
	String operators
	Array operators
	Conditional assignment operators
	Precedence and brackets

	Data types
	String
	Number
	Boolean
	Array
	Declare:
	Get/assign value for element:

	Object
	Initialize
	Access object peroperties or method:

	NULL
	Function

	Conditional structure
	If else structures
	?? expression

	Loop structure
	For structure
	Simple for structures:
	Full for structures:
	For-in with arrays
	Foreach

	while structure
	Loop controllers
	Break

	Continue

	Error handlers
	error_handler_function
	try…catch...finally structures
	defcat...deffin structures

	Multi-threading
	File based multi threading
	Function based multi-threading

	Class
	Constructors
	Access modifiers
	Inherit
	Static
	Convert from array to object:
	Generate class from no class object

